Suggested Solution

li (2x+3y+6z)2S(22+32+62)(x2+y2+22):49
2x+3y+6z<7
lii 2x+3y+6z=7
X +y 4z =1
. 2 a2 22 . 2 3 6
Since 2° +3° +6° =77, by observation,x =—,y=—,z=—.
7 7 7
liii 4
Suppose le.z =1.
i=1
n 2 n 2 n n
(inj =(Zl-xij < anl.z =n= in <+/n
i=1 i=1 i=l1 i=1
Since if we let x, :L for all 1<i<n, we yield ix.z = n[sz =land ix. = n[Lj =+/n, the maximum
l \/; i=1 l \/; i=1 l \/;
possible value of Z)c,. is n .
i=1
liv | Suppose there are n squares of lengths x; contained in the unit square.
Their total area is Z x> <1, and their total perimeter is 18 = Z4xi .
i=l i=1
o 18
By part (iii), ) = Zx,. <Jn=n>2025.
i=1
Hence, there must be more than 20 such squares.
2ia | Number of ways =6x5" = 468750
2ib | Label the 6 designs using 1, 2, 3,4, 5 and 6. Let 4, be the set of ways that the design i is not used.
|4 04,04, 04,040 A
=Dlal-Yanal+Y|ananal-Y4nandna|+Y|404,0 40404,
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=| 55— |48+ 3% 2%+ [1*-0
1 2 3 4 5
=1488096
Required number
= |S | - |Al VA4, UAd, UA, U AU A, where S is the set of ways without restriction
= 6" —1488096 =191520
Alternative solution
Considering that 8 =3+1+1+1+1+1=2+2+1+1+1+1, we can either have 3 of the same designs, or 2 pairs
of 2 different designs.
6 8! 8!
Number of ways="C, x—+ "C, x——=191520
3! 2121
2iia

20+5 25
Number of ways :[ s j:(SJ:SS»BO.




2iib

20-6+5 19
Number of ways with at least one of each design :{ s j :( s ] =11628.

Number of ways with at least one of each design and more than 6 for the particular design

20-12+5) (13
= =~ |=1287.

Number of ways with at least one of each design and at most 6 for the particular design
=11628-1287 =10341.

Alternative solution
By considering the different number of wristbands of the particular design, i.e. 1,2, ..., 6, we will have 19, 18, ...,
14 wristbands of other designs.

18 17 16 15 14 13
Number of ways = + + + + + =10341.
4 4 4 4 4 4

3ai | Since all the sequences cannot start or end with a black bead, a, =9
3aii | Case 1: 2nd bead is not black
There are a, | ways to arrange beads of length n—1 from the 2nd bead to the last bead and there are 3 ways (red,
blue or green) to insert the 1st bead.
Number of ways=3a,_, .
Case 2: 2nd bead is black
There are a, , ways to arrange beads of length n—2 from the 3™ bead to the last bead and there are 2 ways to
insert the 1st bead as its colour must be different from that of the 3™ bead.
Number of ways=2a, _,.
Total no of sequences a, =3a, | +2a, ,
3aiii | a, =3a, ,+2a,,
= 3(3a,k2 +2a,_, ) +2a, ,
=1la, , +6a,, s
= xa, + ya, for some positive integers x and y.
Since @; and a; are divisible by 3, a, is divisible by 3 for all positive integers ».
3aiv | Let P, be the statement that a,, =9m , where m e Z , for all positive integers n.
Since a, =9 is divisible by 9.
- P, s true.
Assume that P, is true for some positive integer k, i.e. a,, =9p, where p e Z.
Check P,
Aopyr =30y, + 20y,
= 3(3q) + 2(9p) [From (iii), a,,,, = 3q, where g € Z ]
=9(q+2p)
a,, ., 1s divisible by 9 since g +2p € Z.
- P is true.
Since P is true and P, is true = P, is true, by Mathematical Induction, a,,is divisible by 9 for all positive
integers 7.
3b | There are 2! — 1 = 1023 non-empty possible subsets (pigeons) of the set of 10 positive integers.

Since the smallest possible sum is 10 and the largest possible sum is 90 + 91 + 92 + ... + 99 = 945, there are 936
possible sums (pigeonholes) in total for subsets of 10 integers.

Hence, by the pigeonhole principle, there are at least 2 non-empty subsets with the same sum. Call these two
subsets X and Y.




If X and Y are disjoint, we are done.
Ifnot, let W=XNY.Then X\ Wand Y| W are the two required sets.

4ai
Since p>1, _r < 1 for all positive integers 7.
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Since the partial sum is increasing and bounded above, it must converge by the monotone convergence theorem.
4aiii | Since {a,}  converges, it must be bounded.
Let M >0 be such that |an| =‘npbn‘ <M forall n>1.
Then |b, | M forall nx1.
np
o0 1 o0
From (ii), Z—p converges, so Z =M Z— converges.
n=1 n n=l1 n n=1 n
By the comparison test, Z|bn| converges.
n=1
4(b) . L . . 1
Observe that the terms are always positive and hence it is an increasing sequence since Xx,,;, —X, =—>0.
ix
. . . S 1 _1
Assume that the sequence is bounded above by M , i.e. forall i>1, x, <M which gives — > v
X,
By the method of difference,
k+1 1 — i+1 i — ixl. - P lM M — i
1 &1 1 &1
Hence, x,,, 21+—) =>— ) —
ko M ;i M
Since Z diverges, the sequence {xk } >, 1s unbounded above — this contradicts our initial assumption.
i=1 l N
Hence, the sequence is unbounded and the sequence diverges.
Sai | If n is even, then




n(n-2) - n(n—2)
un76

n(n—2)(n-4)

Uy
n(n-2)n-4)..(4)(2)
1
n(n—2)n-4)...4)(2)

Since, n is even, then n = 2k for some integer k.
1

T S 2k —2)(2k —4)...(4)(2)
1
2% k(k =)k —2)...2)(1)
1
~ 2kkl
1
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If n 1s odd, then
un—4
u —
u = n-2 _ n—2
n n

un—é
U, 4 — n—4
nn-2) nn-2)
Mn76

n(n—2)(n-4)

U
n(n-2)n-4)...3)1)
=0

0 , if n is odd

1 .
sou, =4———, if n is even

2;(”jl
2

il

f'(x)=>Y n(n—1c,x"? and f'(x) =Y nc,x"" . Hence
n=2

n=1




f"(x)—xf'(x)—f(x)=0
Zn(n 1), x" - xz ne,x"" — chx” =0

n=2 n=1 n=0

Z(n +2)(n+1c, ,x" - chnx” - Zc”x" =0
n=0 n=1 n=0
Z(n +2)(n+1)c, ,x" - chnx” - Zc”x” =0
n=0 n=0 n=0

[+ 2+ 1), -, ~¢,]x" =0

n=0
Therefore, for all neZ,n >0, we have

(n+2)(n+c,,,—nc,—c, =0

(n+2)(n+c,,, =(n+1)c,

n+2

c

n

Cn+2

cn+2

il

Since f(0)=1and f'(0)=0, we have ¢, =1 and ¢, =0. From (i), we have ¢,, = % and c,,,, =0.

k!
f(x)= icnx” = iCZkXZk Z 2: 'ka
n=0 k=0 .

= k=0 k

5l _J
=k 2
= e%
5(b) . 1
The total number of squares is mn . We want the number of shaded squares to be Emn , but we also know that
the number of shaded squares is 2m +2rn —4 . Hence,
2m+2n—4= lmn
2
mn—4m—-4n+8=0
mn—4)—4(n—4)-8=0
(m-4)(n-4)=8
Hence, both (m—4) and (n—4) must be positive integer divisors of 8. This means that these are the possible
values of m and n:
n-4=12,48andm-4=1,2,4,8=n=5,6,8,12 and m =5,6,8,12
- (mm)=(5.12),(6,8),(8,6) or (12,5)
61 Let x,,x,,...,x,, be the positions of the (+1)’s and (—1)’s. With this arrangement, we are able to find a consecutive

pair of +1 and —1 in the clockwise direction (i.e. in the clockwise direction, the +1 precedes the —1). Remove
this pair of numbers and there will be 2n —2 numbers left arranged in the circle.

We will repeat this procedure by removing consecutive pairs of +1 and —1 in the clockwise direction until there
is a final pair of +1 and —1 left. Let x, be the position of this final +1.

We claim that x, is the starting position for which 7, is never negative.

Since the pairs of +1°s and —1’s removed were consecutive, and within each pair, the +1 preceded the —1, there
will always be an increase of the partial sum 7, prior to a decrease. Hence, 7, is never negative forall 1<i<2n.




Alternative Solution
Let x,,x,,...,x,, be the positions of the (+1)’s and (—1)’s, and let x, be the starting position. As we evaluate 7,

for 1<i<2n, there exists a k such that 7, is minimum. We then claim that x,, is a starting position for which
T, is never negative forall 1<i<2n.

Relabel x, ., ,...,X,,,X,...,X, @S V|, V,,...,¥,, respectively, so y, = x,,, is the starting position. To avoid confusion,
we shall let S, be the new partial sum from position y, to y,.

Since 7, isaminimum, S, =7, -7, 20 for I<i<2n—k.

With equal number of (+1)’s and (-1)’s, 7,, =0. Hence, S,, , =-7,.

Furthermore, 7, 27, = -7, +7,20 forall 1< j<k,wehavethat S, =S, ,+T,,, ,=-T, +T, >0 for

i-2n+k —
2n—k+1<i<2n.

6ii

Note that 7, =i (mod 2) due to the following. Enumerate 7, starting with the index i =1. We have 7, =1 (mod 2)

regardless of the first value, +1 or —1. Subsequently, as the index 7 increases each time by 1, we add +1 or —1
2n 2n

2n
to the value of 7, changing its parity. Hence, n + Z]: =n+ Zi =n+n=2n=0 (mod2);ie. n+ ZTl is even.

i=1 i=1 pa

7i

a>ccos@+dsin@ and b >csin@+d cosl

7ii

“=" (Proof by contraposition.) Suppose on the contrary that d > b, then a >c>d >b and

dcosH+csin92b(cos6’+sin9)=bﬁcos[0—%}>b since 0<9<%:>cos(9—%)>i.

2
“<=" Choose 6 small enough such that ¢sinf <& :=min(a—c,b—d).
Then ccos@+dsin@ <ccos@+csinf<c+e<a and dcos@+csinf@<d+&<bh.

7iil

Let 6, be the angle for which the c¢xd rectangle is strictly contained in the a x b rectangle. By (i), we must

have ccosé, +dsing, <a and csinf, +d cosb, <b:>ccos[%—@oj+dsin(%—90j<bSa.

Let f(6)=ccos@+dsinb, QE{O,E}, 6, =min(60,£—90j and 6, =max(6’0,£—00j. Then we must have
2 2 2

£(6)<a, f(6,)<a and %6[01,92].

d
If we can prove that f is decreasing on [6,,6,], then a >f (%) =79 and we are done.

NG

Since f(6)>0 and "(0)=—ccosf—dsinf <0 for e {0,%} , T has a maximum at 6__, where

(0, )=—csin,, +dcos,, =0=6, =tan’1iS%.
c

Since f(0)=c>a and fis increasing on [0,6,

max m

|, we must have 6, <6, . Since fis decreasing on [9 ax ’E} ,

it is also decreasing on [6,,6,] and we are done.

Tiv

A c¢xd rectangle (with ¢ > d ) can be strictly contained in an a xa square if and only if a > ¢ or a2 >c+d.

Proof
(:>) : Suppose that a ¢xd rectangle (with ¢ >d ) can be strictly contained in an axa square. If a > ¢, we are

done. Otherwise if a <c, then by (iii), we have a2 >c+d.




(<:): Suppose a >c¢ or a2 >c+d.

If a>c,thenby (ii),a c¢xd rectangle can be strictly contained inan axa squareiff a >d . Butsince a >c>d ,
the rectangle can always be contained in the square.

If aN2>c+d , substituting & =% into the inequalities in (i) yields ccos%+ d sin% _or d <a and

NG

. T c+d . . .
csmz +d cosz = < a . This shows that the rectangle can be contained in the a xa square.

V2

8i

n (mod 12) 0O]1 (12|34 |5|6]7]8|9]10]11

n“(mod12) |0 |1 41914 |1]0]1]4]9]4 |1
By exhaustion, the elements of S(12) are all square numbers.

8ii

Let N=9. Since 4’ =16=7 (mod 9), 7<S(9) and 7 is not a square number.

8iil

Since (N + r)2 =7’ (mod N) forall r e Z with 0<r< JN , there are at least /N unique 7’s.

Hence, {0,1,4,...,(L\/N—1J)2}gS(N) and S(N) has at least JN elements.

NB We use L N-1 J instead of LW J to be precise, since if N is a square number, then L\/ﬁ JZ =N is not an
element of S(N) .

8iv

Suppose 3x,n,A €Z such that x> =17+2"A1, with n>5.

If A is even, then x> =17 +2""! [%J:s ¥ =17 (mod 2", ie. 17€8(2"").

n-2
If 1 is odd, let ,u=/1++2.Notethat ueZ since A, x areoddand n>5.

Then 2" 1417 =2"(A+x+2"2)+17
=x?+2"x+2%?
=(x+2"71)2.

Hence, (x +2"! )2 =17 (mod 2""),i.e. 17 € S(Z””) .

8v

Let P, be the statement: 17 € S(Z” ),n >5.
For n=5, 7° =49=17(mod2’) . Hence, Ps is true.
By (iv), we have shown that 17 € S(Z" ) =17€ S(2"+1 ) ,ie, P =P  forn>5.

By induction, P, is true for all n>5.

From (iii), we have shown that there are at least VN numbers in S(N ) , where all these elements are square
numbers. Since 17 is not a square number, and is also in S(Z") for n>5, then we must have at least 1++/2"
elements in S(Z" ) .

Alternative Solution
Case 1: nis even

2
(22 +1] —2 122" 11=22" +1 (mod 2")




Then {12,22,,,,,0 = [22j ,22+l + 1} c S(2") , and this shows that S(2") has at least 14-\/27 elements.

Case 2: nis odd

n+l 2 n+3 n+3
(22 +1] =2""4+22 +1=22 +1(mod 2")

n n+3
Then 02,12,22,...,&22J] 22 +1 gS(Z”), and this shows that S(2") has at least lJr\/27 elements.

n+3

Note that in both cases above, 271 +1and 2 2 +1 are not square numbers.
Suppose that p® =27 +1 forsome p,geZ", then (p+1)(p—-1)=27.

This implies that p+1=2* and p—1=2' for some k,/ e Z" with k+I=q.
Hence, 2" —1=p=2'+1=2(2" +1)=2" = /=1k=2=¢=3.

n+3

+3 . 241 ==
7754 , which says that 22 +1 and 2 2 +1 are not square numbers.

Butn25:>§+1,




