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1. Prove, by Mathematical Induction, for all integers 2n  , 

    
2

1 1 1 2
1 1 1 .

2 3 nn

    
− − −     

    
  [5] 

 

 

2. Given that 1 2,  , ,  na a a and n are all odd integers, prove that the greatest common 

divisor of 1 2,  , ,  na a a is equal to the greatest common divisor of 

2 3 11 2 ,  , ,  .
2 2 2

na a a aa a + ++
  [5] 

 

 

3. (i) Show that, for 0m  ,  

                                
2 3

21/

( 1) ( 1)
d ln .

1 2

m

m

x m m
x m

x m

− +
= +

+  [3]        

 (ii) Show by means of substitution 
1

x
u

= , that                      

    
1

1/

1/

1
d d .

1( 1)

n
a b

nb a

u
x u

ux x

−

=
++   [2] 

 (iii) Hence or otherwise, without using calculator, evaluate 

    
5 3

2

31

1
d .

( 1)

x x
x

x x

+ +

+  [3] 

 

 

4. (a) If x and y are odd integers, prove that 
2 2x y+  cannot be a perfect square.  [3] 

 

(b) Prove that if n is a composite positive integer, then n divides ( )1 !n− , except 

when 4.n =   [6] 
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5. Casper has n fence posts, each of different width, arranged in a straight line in front of 

his house. To surprise his wife, Ashley, Casper decides to paint the posts using three 

different colours red, white and green in such a way that no adjacent fence posts have 

the same colours. Let nr  be the number of ways that Casper can paint the fence posts if 

he paints the first and last post red, and let ns  be the number of ways that Casper can 

paint the posts if he paints the first post red but the last post with either of the other two 

colours.  

 (i) Explain why 1n nr s+ = . Hence determine the value of 1n nr r+ +  for all n + . [2] 

 (ii) Prove that for all n + ,  

   
1 12 2( 1)

3

n n

nr
− −+ −

= . [4] 

 (iii) Find the number of ways of painting the n fence posts, given that 3n  , with the 

 three different colours red, white and green in such a way that no adjacent fence 

 posts have the same colours, if Casper wants to arrange the posts in a circle 

 surrounding a newly built pond outside his house. Give your answer in terms of n. 

   [3] 

 

 

6. The school library is undergoing renovation, and Elijah the student librarian needs to 

pack the library books into boxes so that they can stored away from the library during 

the renovation.  

 Find the number of ways that Elijah can pack 8 identical library books on science into 

10 identical boxes. [3] 

 

 When the renovation is completed, Elijah needs to arrange 16 identical library books on 

mathematics onto 4 distinct shelves. Find the number of ways to arrange these 16 

identical mathematics book such that 

(i) exactly one shelf have 8 books, [2]  

(ii) each shelf can hold at most 8 books, [3] 

(iii) exactly two shelves have an even number of books each, and none of the shelves 

 are empty. [3] 
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7. (a) Given that , ,a b c + , by using AM-GM inequality, prove that      

                                     
3 3 3( 1) ( 1) ( 1) 81

4

a b c

b c a

+ + +
+ +  . [3] 

 

 (b) Given that 1, 1, 1x y z   , and 
1 1 1

2
x y z
+ + = , by using Cauchy-Schwarz 

Inequality, prove that 

                                       1 1 1x y z x y z+ +  − + − + −  [3] 

 

 (c) Given that 3a b c d+ + + =  and 2 2 2 22 3 6 5a b c d+ + + = , prove that 1 2a  . [3] 

 

 (d) Given that , ,a b c + , by proving the contrapositive or otherwise, if 

a b c abc+ +   then 2 2 2a b c abc+ +  . [4] 

 

 

8. (i) A polynomial of degree n leaves a remainder of R when divided by any of 

( )1 ,x −  ( )2 ,x − , and ( ).nx −  Given that the coefficient of nx  is k, where 

0,k   write down the polynomial. [1] 

 

         (ii) The polynomial ( )P x  has degree N, where 1,N   and satisfies 

( ) ( ) ( )1 2 1.P P P N= = = =  The coefficient of Nx is denoted by m. 

(a) Find an expression for ( )1P N + . [2] 

(b) Suppose ( )1 1.P N N+ = +  Find ( )P N r+ , where r is a positive integer. [3] 

 

 (iii) The polynomial ( )S x  with integer coefficients, is of degree 4. The coefficient of 

4x  is 1. It satisfies ( ) ( ) ( ) ( ) 2009,S a S b S c S d= = = =  where a, b, c and d are 

distinct integers (not necessary positive), such that .a b c d     

(a) By considering the factors of ( ) 2009S n − , use pigeon hole principle to 

show that there is no integer n such that ( ) 2020.S n =  [4] 

(b) Find the number of ways the integers a, b, c and d can be chosen such that   

( )0 2090.S =  [3]  
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9. (i)     Some hyperbolic functions are defined as 
e e

sinh
2

x x

x
−−

=  and 
e e

cosh
2

x x

x
−+

= .         

 Prove that 

(a) 2 2sinh 1 cosh ,x x+ =  and [1] 

(b)  
dcosh

sinh .
d

x
x

x
=  [1] 

(ii) Solve the equation 2 2 sinh 1 0u u x+ − = giving u in terms of x. [2] 

 Hence find the particular solution of the differential equation 

   

2
d d

2 sinh 1 0
d d

y y
x

x x

 
+ − = 

 
 

 that satisfies y = 0 and 
d

0
d

y

x
  at x = 0. [3] 

(iii) Find the general solution of the differential equation  

   

2
d d

sinh 2 sinh 0
d d

y y
y y

x x

 
+ − = 

 
. 

 Given further that 0y =  at 0x = , expressing your particular solution in the form 

cosh f ( )y x= . [6]  

 

10. (i) Prove that, for any positive integers n and r,  

    
1

1

1 1 1 1

C C Cn r n r n r
r r r

r

r+ + − +
+

 +
= − 

 
.                                       [3] 

    Hence determine 
1 1

1

Cn r
n r



+
= +

  in terms of r, and use the result obtained to deduce   

 that 
2

2 3

1 1

2Cn
n



+
=

= . [5] 

 (ii) Show that, for 3n  , 

    
3 1

3

3! 1

Cnn +
  and 

1 2 3
3 5

20 1 5!

C Cn n n+ +
−  . [3] 

 (iii)   Using the results in (i) and (ii), show that  

    
3

1

115 1 116

96 96n n



=

  . [3]  
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