
 Suggested Solution 
1i ( ) ( )( )2 2 2 2 2 2 22 3 6 2 3 6 49

2 3 6 7

x y z x y z

x y z

+ + ≤ + + + + =

+ + ≤
 

1ii 
2 2 2

2 2 2 2

2 3 6 7
1

2 3 6Since 2 3 6 7 ,  by observation, , , .
7 7 7

x y z
x y z

x y z

+ + =


+ + =

+ + = = = =

 

1iii 2

1
Suppose 1.

n

i
i

x
=

=∑  

2 2
2

1 1 1 1
1

n n n n

i i i i
i i i i

x x n x n x n
= = = =

   
= ⋅ ≤ = ⇒ ≤   

   
∑ ∑ ∑ ∑  

 

Since if we let 1
ix

n
=  for all 1 i n≤ ≤ , we yield 

2
2

1

1 1
n

i
i

x n
n=

 
= = 

 
∑ and 

1

1n

i
i

x n n
n=

 
= = 

 
∑ , the maximum 

possible value of 
1

n

i
i

x
=
∑  is n . 
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Hence, there must be more than 20 such squares. 
2ia Number of ways 76 5 468750= × =  
2ib Label the 6 designs using 1, 2, 3, 4, 5 and 6. Let iA  be the set of ways that the design i is not used. 
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Alternative solution 
Considering that 8 3 1 1 1 1 1 2 2 1 1 1 1= + + + + + = + + + + + , we can either have 3 of the same designs, or 2 pairs 
of 2 different designs. 
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2iib 
Number of ways with at least one of each design 
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Number of ways with at least one of each design and more than 6 for the particular design 
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1287.
5 5

− +   
= = =   
   

 

Number of ways with at least one of each design and at most 6 for the particular design 
11628 1287 10341.= − =   

 
Alternative solution 
By considering the different number of wristbands of the particular design, i.e. 1, 2, …, 6, we will have 19, 18, …, 
14 wristbands of other designs. 
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3ai Since all the sequences cannot start or end with a black bead, 2 9a =  
3aii Case 1: 2nd bead is not black 

There are 1na −  ways to arrange beads of length 1n −  from the 2nd bead to the last bead and there are 3 ways (red, 
blue or green) to insert the 1st bead. 
Number of ways 13 na −= . 
 
Case 2: 2nd bead is black 
There are 2na −  ways to arrange beads of length 2n −  from the 3rd  bead to the last bead and there are 2 ways to 
insert the 1st bead as its colour must be different from that of the 3rd  bead. 
Number of ways 22 na −= . 
Total no of sequences   1 23 2n n na a a− −= +  
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Since a1 and a2 are divisible by 3, an is divisible by 3 for all positive integers n. 
3aiv Let Pn be the statement that 2 9na m= , where m∈ , for all positive integers n. 

Since 2 9a =  is divisible by 9. 

1P  ∴ is true.  
Assume that Pk  is true for some positive integer k, i.e. 2 9ka p= , where .p∈  
Check 1Pk+  
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2 2ka + is divisible by 9 since 2 .q p+ ∈  

1kP +∴ is true.  
Since P1 is true and Pk  is true 1Pk+⇒  is true, by Mathematical Induction, 2na is divisible by 9 for all positive 
integers n. 

3b There are 210 – 1 = 1023 non-empty possible subsets (pigeons) of the set of 10 positive integers.  
Since the smallest possible sum is 10 and the largest possible sum is 90 + 91 + 92 + … + 99 = 945, there are 936 
possible sums (pigeonholes) in total for subsets of 10 integers.  
Hence, by the pigeonhole principle, there are at least 2 non-empty subsets with the same sum. Call these two 
subsets X and Y.   
 



If X and Y are disjoint, we are done.  
If not, let W X Y= ∩ . Then X \ W and Y \ W are the two required sets.  
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Since the partial sum is increasing and bounded above, it must converge by the monotone convergence theorem. 
4aiii Since { } 1n na
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4(b) 
Observe that the terms are always positive and hence it is an increasing sequence since 1
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By the method of difference,  
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Hence, the sequence is unbounded and the sequence diverges. 
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Since, n is even, then n = 2k for some integer k. 
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If n is odd, then 
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Since f (0) 1= and f '(0) 0= , we have 0 1c =  and 1 0c = . From (i), we have 2kc = 1
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5(b) 

The total number of squares is mn . We want the number of shaded squares to be 1
2

mn , but we also know that 

the number of shaded squares is 2 2 4m n+ − . Hence,  
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Hence, both ( 4)m −  and ( 4)n −  must be positive integer divisors of 8. This means that these are the possible 
values of m and n: 

4 1,2,4,8 and 4 1,2,4,8 5,6,8,12 and 5,6,8,12n m n m− = − = ⇒ = =  
( ) ( ) ( ) ( ) ( ), 5,12 , 6,8 , 8,6  or 12,5n m∴ =  

6i Let 1 2 2, ,..., nx x x  be the positions of the ( 1+ )’s and ( 1− )’s. With this arrangement, we are able to find a consecutive 
pair of 1+  and 1−  in the clockwise direction (i.e. in the clockwise direction, the 1+  precedes the 1− ). Remove 
this pair of numbers and there will be 2 2n −  numbers left arranged in the circle. 
We will repeat this procedure by removing consecutive pairs of 1+  and 1−  in the clockwise direction until there 
is a final pair of 1+  and 1−  left. Let kx  be the position of this final 1+ .  
We claim that kx  is the starting position for which iT  is never negative. 
 
Since the pairs of 1+ ’s and 1− ’s removed were consecutive, and within each pair, the 1+  preceded the 1− , there 
will always be an increase of the partial sum kT  prior to a decrease. Hence, iT  is never negative for all 1 2i n≤ ≤ . 
 
 
 



Alternative Solution 
Let 1 2 2, ,..., nx x x  be the positions of the ( 1+ )’s and ( 1− )’s, and let 1x  be the starting position. As we evaluate iT  
for 1 2i n≤ ≤ , there exists a k  such that kT  is minimum. We then claim that 1kx +  is a starting position for which 

iT  is never negative for all 1 2i n≤ ≤ . 
 
Relabel 1 2 1,..., , ,...,k n kx x x x+  as 1 2 2, ,..., ny y y  respectively, so 1 1ky x +=  is the starting position. To avoid confusion, 
we shall let iS  be the new partial sum from position 1y  to iy . 
Since kT  is a minimum, 0i i k kS T T+= − ≥  for 1 2i n k≤ ≤ − . 
With equal number of ( 1+ )’s and ( 1− )’s, 2 0nT = . Hence, 2n k kS T− = − . 
Furthermore, 0j k k jT T T T≥ ⇒ − + ≥  for all 1 j k≤ ≤ , we have that 2 2 2 0i n k i n k k i n kS S T T T− − + − += + = − + ≥  for 
2 1 2n k i n− + ≤ ≤ . 

6ii Note that  (mod 2)iT i≡  due to the following. Enumerate iT  starting with the index 1i = . We have 1 1 (mod 2)T ≡  
regardless of the first value, 1+  or 1− . Subsequently, as the index i increases each time by 1, we add 1+  or 1−  

to the value of iT , changing its parity. Hence, 
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7i cos sina c dθ θ> +  and sin cosb c dθ θ> +  
7ii “⇒ ” (Proof by contraposition.) Suppose on the contrary that d b≥ , then a c d b> ≥ ≥  and  

( )cos sin cos sin 2 cos
4

d c b b bπθ θ θ θ θ + ≥ + = − > 
 

 since 10 cos
2 4 2
π πθ θ < < ⇒ − > 
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“⇐ ” Choose θ  small enough such that ( )sin : min ,c a c b dθ ε< = − − . 
Then cos sin cos sinc d c c c aθ θ θ θ ε+ ≤ + < + ≤  and cos sind c d bθ θ ε+ < + ≤ . 

7iii Let 0θ  be the angle for which the c d×  rectangle is strictly contained in the a b×  rectangle. By (i), we must 

have 0 0cos sinc d aθ θ+ <  and 0 0 0 0sin cos cos sin
2 2

c d b c d b aπ πθ θ θ θ   + < ⇒ − + − < ≤   
   

. 

 

Let ( )f cos sinc dθ θ θ= + , 0,
2
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, 1 0 0min ,
2
πθ θ θ = − 

 
 and 2 0 0max ,

2
πθ θ θ = − 

 
. Then we must have 

( )1f aθ < , ( )2f aθ <  and [ ]1 2,
4
π θ θ∈ . 

If we can prove that f is decreasing on [ ]1 2,θ θ , then f
4 2

c da π + > = 
 

 and we are done. 

 

Since ( )f 0θ >  and ( )f '' cos sin 0c dθ θ θ= − − <  for 0,
2
πθ  ∈  

, f has a maximum at maxθ , where 

( ) 1
max max max maxf ' sin cos 0 tan

4
dc d
c

πθ θ θ θ −= − + = ⇒ = ≤ . 

 

Since ( )f 0 c a= ≥  and f is increasing on [ ]max0,θ , we must have max 1θ θ< . Since f is decreasing on max ,
2
πθ 

  
, 

it is also decreasing on [ ]1 2,θ θ  and we are done. 
7iv A c d×  rectangle (with c d≥ ) can be strictly contained in an a a×  square if and only if a c>  or 2a c d> + . 

 
Proof 
( ) :⇒  Suppose that a c d×  rectangle (with c d≥ ) can be strictly contained in an a a×  square. If a c> , we are 

done. Otherwise if a c≤ , then by (iii), we have 2a c d> + . 
 



( ) :⇐  Suppose a c>  or 2a c d> + . 
If a c> , then by (ii), a c d×  rectangle can be strictly contained in an a a×  square iff a d> . But since a c d> ≥ , 
the rectangle can always be contained in the square. 

If 2a c d> + , substituting 
4
πθ =  into the inequalities in (i) yields cos sin

4 4 2
c dc d aπ π +

+ = <  and 

sin cos
4 4 2

c dc d aπ π +
+ = < . This shows that the rectangle can be contained in the a a×  square.  

8i  
n (mod 12) 0 1 2 3 4 5 6 7 8 9 10 11 
n2 (mod 12) 0 1 4 9 4 1 0 1 4 9 4 1 

By exhaustion, the elements of S(12) are all square numbers. 
8ii Let 9N = . Since 24 16 7 (mod 9)= ≡ , ( )7 S 9∈  and 7 is not a square number. 
8iii Since ( )2 2  (mod )N r r N+ ≡  for all r∈  with 0 r N≤ < , there are at least N  unique r’s.  

Hence, ( ){ } ( )
2

0,1,4,..., 1 SN N − ⊆   and ( )S N  has at least N  elements. 

NB We use 1N −   instead of N 
   to be precise, since if N is a square number, then 

2
N N  =   is not an 

element of ( )S N . 
8iv Suppose , ,x n λ∃ ∈  such that 2 17 2nx λ= + , with 5n ≥ . 

If λ  is even, then 2 1 2 117 2 17 (mod 2 )
2

n nx xλ+ + = + ⇒ ≡ 
 

, i.e. ( )117 S 2n+∈ . 

 

If λ  is odd, let 
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Hence, ( )21 12 17 (mod 2 )n nx − ++ ≡ , i.e. ( )117 S 2n+∈ . 

8v Let Pn be the statement: ( )17 S 2 , 5n n∈ ≥ . 

For 5n = , 2 57 49 17(mod 2 )= ≡ . Hence, P5 is true. 

By (iv), we have shown that ( ) ( )117 S 2 17 S 2n n+∈ ⇒ ∈ , i.e., 1P Pn n+⇒  for 5n ≥ . 

By induction, Pn is true for all 5n ≥ . 
 
From (iii), we have shown that there are at least N  numbers in ( )S N , where all these elements are square 

numbers. Since 17 is not a square number, and is also in ( )S 2n  for 5n ≥ , then we must have at least 1 2n+  

elements in ( )S 2n . 
 
Alternative Solution 
Case 1: n is even 
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Then ( )
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, and this shows that ( )S 2n  has at least 1+ 2n  elements. 

 
Case 2: n is odd 

21 3 3
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, and this shows that ( )S 2n  has at least 1+ 2n  elements. 

Note that in both cases above, 
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Suppose that 2 2 1qp = +  for some ,p q +∈ , then ( )( )1 1 2qp p+ − = . 
This implies that 1 2kp + =  and 1 2lp − =  for some ,k l +∈  with k l q+ = . 

Hence, ( )12 1 2 1 2 2 1 2 1, 2 3k l l kp l k q−− = = + ⇒ + = ⇒ = = ⇒ = . 

But 35 1, 4
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