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1 a, b and c are the lengths of the three sides of a triangle with perimeter 2. Squares are 

constructed on each of the three sides of the triangle, as shown in the diagram. 

   

  
 

 Let S be the sum of the areas of the three squares. 

 

 (i) Using the Cauchy-Schwarz inequality, prove that 
4

,
3

S  and find the condition that 

must be satisfied by a, b and c in order to have 
4

.
3

S   [5] 

 

 (ii) (a) Explain why the length of any side of the triangle, i.e. a, b and c, are all  

less than 1.   [1] 

 

  (b) Hence or otherwise, show that  
2 2 21 1 .bb c c       [3] 

 

 (iii) Hence explain why 
2 2b c  is always less than  

2
1 1 .a    [1] 

 

 (iv) Deduce that 2.S    [2]  

 

 (v) Give an example of a set of side lengths  , ,a b c  such that 1.36.S    [1] 
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2 (a) A subphrase is a sequence of letters that appears together in the exact order within 

the word given. For example, “JUST” and “IF” is a subphrase in the word 

REJUSTIFY, but not “REST”. 

 

  Find the number of rearrangements possible for the 9 letters of the word REJUSTIFY  

in which the following phrases are not found as a subphrase of the rearrangement:  

   “JUST’, “RYE”, “IF”. [4] 

 

 

 (b) Seven distinct colours are used to colour the sectors 

of a circle shown on the right. 

 

  Let na  denote the number of ways to colour a circle 

with n sectors such that each sector is coloured by 

one colour and any two adjacent sectors must be 

coloured by different colours. 

 

  (i) Find the values of 1 2 and .a a   [2] 

 

  (ii) Explain why  1

1 7 6n

n na a 

    for 3,  .n n    [3] 

 

  (iii) Use Mathematical Induction to show that   

   6 1 6
n n

na     for all 3,  .n n    [4] 

 

 

3 (a) A shop sells doughnuts which comes in four flavours – vanilla, strawberry, chocolate 

and banana. The shop has a large number of doughnuts of each flavour. 
 

  (i) Mr. Lim wishes to buy a set of 12 doughnuts such that there is at least one 

doughnut of each flavour. In how many ways can he do this? [3] 

 

  (ii) Mrs. Tan wishes to buy 12 doughnuts for her 4 children, where each child can 

get any number of doughnuts of any flavour, including none (subject to a total 

of 12 doughnuts). In how many ways can she do this? [3] 

 

  (iii) Mr. Soh wishes to buy 2 doughnuts for each of 6 boys. In how many ways can 

he do this? [3] 

 

(b) Let 1 2,  , ,  nx x x  be any sequence of integers. By using the pigeonhole principle, 

 or otherwise, prove that there is a consecutive subsequence with a sum that is 

 divisible by n.  [5] 
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4 (a) Given a positive integer c, show that if 3c  is odd, then c is odd. [2] 

 

 (b) Given positive integers a, b, c, and d, if 

  gcd , 2a b c d   

  gcd , 28a b   

 14 | c  

  show that 7 | .d    [3] 

 

 (c) Show that if a and b are odd integers with 1,a b   then 2 2a b  is divisible  

by 8.    [4] 

 

 (d) It is known that      gcd ,  gcd ,  gcd ,  p q p q q p q q     for any positive 

integers p and q. 

 

  (i) Using the property above, show that if  gcd ,  1a b a b    for positive 

integers a and b with 1,a b   then  gcd , 1.a b   [3] 

 

  (ii) Provide a counterexample to show why the converse does not necessarily  

hold.   [1] 

 

 

5 (a) The Bernoulli equation has the general form  
   

   
d

f ( ) g( ) , 0,  1.
d

ay
x y x y a

x
    

 

  (i) Show that the Bernoulli equation can be transformed into  
  

        
dz

1 f ( ) 1 g( ), 0,  1.
d

a x z a x a
x
      

   by the substitution 
1 .az y    [3] 

 

  (ii) By considering 
 1 f ( ) dd

e ,
d

a x x

z
x

 
 
 

 show that the general solution for the first 

order linear equation in (i) is 
 

 
 1 f ( ) d 1 f ( ) d

e 1 e g( ) d .
a x x a x x

z a x x
     [3] 

 

  (iii) A solution curve of the differential equation 2d
sin

d

y
y x y

x
    passes through 

the point  0,1 .  Find the equation of the curve. [6] 
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6 (i) Let x  be an integer. By considering x k  (mod 8), where k  is an integer satisfying 

0 7,k   show that 
2 ,x r  where  0,1,4 .r  [3] 

 

 (ii) Hence, prove that if n  is a positive integer of the form 8 7,m  then there do not exist 

integers a, b, c such that 2 2 2.n a b c     [3] 

 

 (iii) Hence, or otherwise, using mathematical induction, prove that no integer of the form 

4 (8 7),k m   where ,k  can be written as the sum of square of three integers.  

Hint: Use (ii) to prove the case where 1k  . [6] 

 

 

7 Let f  be a periodic differentiable function with period 2π.  It is known that such a function 

can be represented by a linear combination of sines and cosines.  

  

 Define ( )nS x  as the nth partial sum of the Fourier series of the function f  described as 

follows:  
 

 For non-negative integers n, 

  
0

1 1

( ) cos( ) sin( ),
n n

n k k

k k

S x a a kx b kx
 

   ,x  

 where for 1,  2, ,k     
  

 the coefficients of the cosines and sines can be computed as 

 
π

0
π

1
f ( ) d ,

2π
a t t


    

π

π

1
f ( )cos( ) d ,

π
ka t kt t


         and     

π

π

1
f ( )sin( ) d .

π
kb t kt t


    

  

 (a) Let f ( ) cos( )x mx , where 1,  2,  m  .  For 0,  1,  ,k    show that  
 

  (i) 0,kb   
 

  (ii) 0,ka   ,k m  
 

  (iii) 1ma  .   [5] 

  

 Define 
1

1
( ) 1 2 cos( ) ,

2π

n

n

k

D z kz


 
  

 
  .z  

 

 (b)  Using the definitions of ka  and kb , and interchanging integrals and summations, 

show that 
π

π
( ) ( )f ( ) dn nS x D x t t t


  .  [3] 

 

 (c)  By considering sin ( )
2

n

z
D z

 
 
 

 and using a method of differences, or otherwise, show 

that 

i

1
sin

2
( )

2πs n
2

nD

z

z
z

n


 
 








 




.  [2] 
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8 Let  na  and  nb  be two infinite sequences with 0,1,2,...n   and all terms non-negative.  

The Comparison Test states that if n nb a  for all non-negative integers and  
0

i

i

b




  

converges, then 
0

i

i

a




  converges. 

 

 (a) Let the set A denote the set of positive integers n containing the digit 9 and the set B 

denote the set of positive integers n not containing the digit 9.   
 

  Also, let 
0

1 1
1 ...

2 8
c      

   

1

1 digits

1 1 1 1 1
... ...

10 11 18 20 88

1 1 1
... and so on, where .

10 10 1 8...8
k k k

k

c

c k 



      

    


 

  (i) Show that 

1
9

8 .
10

k

kc



 
  

 
 Hence or otherwise, show that  

    
1 1 1 1 1 1 1 1

1 ... ... ... ...
2 8 10 18 20 88 100n B n

               

is convergent.  [3] 

   

  (ii) Determine if 
1

n A n

  is convergent or divergent. [1] 

 (b) (i) Show that 
4 2 1 1 1

8 1 8 4 8 5 8 6 2k k k k
   

   
  for all positive integers k.  

  

   Hence, use the Limit Comparison Test to show that  

 
0

1 4 2 1 1

16 8 1 8 4 8 5 8 6k
k k k k k





  
    

     
   

   converges.   [3] 

 

  (ii) Given that  

 
 

1
1

2

8
00 2

1 1
d ,

1 16 8
2

r

r i
i

x
x

x i r

 




 





  

    5 4 3 2 22 4 1 2 2 2y y y y y y y         and 

   4 2 24 2 2 2 2 ,y y y y y        

   find the exact value of 
0

1 4 2 1 1

16 8 1 8 4 8 5 8 6k
k k k k k





  
    

     
  with the 

use of the substitution 2y x  when performing the integration. [6] 

 

End of Paper 


